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Introduction 
This document describes the design and implementation of TBF on the Mica Motes. 

Motes are tiny embedded devices with software radio and a slew of other sensors. 

They are highly resource constrained, having just 128K of programmable memory and 

4K of RAM. TinyOS is an operating system designed for these embedded devices. It is 

a very simple OS, consisting of a non-preemptive round robin scheduler and the 

accompanying drivers needed to use the radio and the sensor devices.  

TBF is a protocol, in which nodes in a sensor network (we assume that the nodes know 

their position by some means) can send packets along arbitrary trajectories, 

represented by mathematical expressions. TBF can be used in implementing important 

networking functions such as flooding, discovery, and network management. Trajectory 

routing is very effective in implementing many networking functions in a quick and 

approximate way, as it needs very few support services. Once TBF is deployed on to 

any network, packets can be routed along any trajectory specified. The applications of 

such a versatile forwarding algorithm are limitless, especially in disposable networks 

where nodes are thrown or dropped to form a one-time use network. 

Overview of TBF 
There are many instances when standard bootstrapping or configuration services are 

not available. In such cases, TBF will serve as a competent substitute. Forwarding 

based on trajectories decouples the path name from the path itself. Since a trajectory 

can be specified independently of the nodes that makeup the trajectory, routing can be 

very effective even when the intermediate nodes that makeup the path fail, or are 

otherwise unavailable. The specification of the trajectory can be independent of the 

ultimate destinations of the packet, and thus provides efficient methods for 

implementing network functions such as flooding, discovery and multicast. In the end, 

we want to be able to specify any routing trajectory and have packets forwarded to all 

nodes along that trajectory. 

TinyOS networking stack 
At the 10,000-mile overview, the TinyOS “messaging” system is based on the Active 

Message framework. This fits rather nicely with an event-driven operating system. 

Anytime a message is received, an event is generated, and an appropriate handling 

method is called. Message packets are encapsulated with the TOS_Msg structure (with 



a default size of 36 bytes). TOS_Msg buffers are stored in the TOS frame, and thus are 

globally accessible, which optimizes memory usage. 

Sending 

The process is totally asynchronous and the control is immediately returned to the 

caller, another event called the send_done event will be triggered on completion. When 

the message layer accepts a send command, it owns the message buffer, and the 

requesting component should not access the buffer until the send_done event is called. 

Receiving 

The component can register a handling function for every type of received message, 

this is typically done during compile time by “wiring” the appropriate even handler to 

the appropriate component method. When a message arrives, it fills the buffer 

structure, and the active message layer decodes the handler type and dispatches. The 

layer gives the processing component the pointer to the buffer, and expects a pointer 

to a blank buffer upon return. 

The GENERIC_COMM component provides a more in depth view of the network stack. 

GENERIC_COMM contains six additional components, from the high-level messaging 

component all the way down to modulation of individual bits on the radio link. More 

information about the network stack and GENERIC_COMM can be found in Lesson 4 

of the TinyOS tutorial. 

Representing and encoding trajectories 
We need to represent the trajectory in a compact form, yet it should be expressive so 

that we are able to represent equations of arbitrary complexity (provided the packet is 

large enough).  It should also be easy to encode and decode, and the process must be 

fast. Ideally the encoding and decoding must be orders of magnitude faster than the 

time it takes to send out a packet. The solution we propose is to represent the 

trajectory as a parametric equation, that is, we have an equation for x(t) and y(t). The 

trajectory is encoded in Reverse Polish Notation (RPN) also known as the postfix 

notation. We chose RPN after evaluating several other choices like active message 

packets and infix notation. The encoding is binary in order to save on packet size. 

Using schemes like XML might be very convenient and portable, however they are not 

compact enough to be sent over TOS messages, which have just 30 bytes as payload. 

The size of the trajectory encoding depends on the complexity of the equation to be 

represented. Many common equations like sine waves, straight lines and circles are 

easily encoded and are compact enough to be transmitted over TOS messages. 

A note about RPN 
This is a formal logic system that enables us to represent arbitrary mathematical 

expressions without using parenthesis. For example: 



[infix notation] (4 + 5) * 6 could be expressed as: 

[prefix notation] * + 4 5 6 

[postfix notation] 6 4 5 + * 

The advantage of using RPN over prefix notation is that we can evaluate arbitrarily 

complex equations just with the help of a stack. In order to evaluate RPN expressions, 

we simply read from left to right. If the character under consideration is an immediate 

(a number) then we push it onto the stack. If we read a function symbol (like *, + or 

sin) we pop the required number of operands from the stack and call the function on 

these operands. This is extremely simple, evaluating prefix or infix expressions is 

significantly more complex than this. 

Lookup codes 
We need to send the resulting equations over the packet; one of the choices is to send 

the equation in human readable text format. There are certain problems with this: 

» Size of the resulting encoding is large 

» We need to parse integers and floating point numbers which can be slow 

Instead, we have lookup codes that are just 1 byte long and represent the functions in 

the expression. Currently, we can have three different data types for immediates: 

» Character (1 byte) 

» Integer (2 bytes) 

» Floating point (4 bytes) 

Each of these are encoded in the little endian format, we further prefix a code that 

indicates what type of data the following immediate is of. Our representation is 

compact and we do not need to parse any data bytes in order to decode immediates. 

This is the current list of functions that we support: 

Code Symbol name Pointer to the function 
Immediates 
1 FLOAT NULL 
2 INT NULL 
3 CHAR NULL 
Functions with one argument 
4 SIN sin 
5 COS cos 
6 TAN tan 
7 ASIN asin 
8 ACOS acos 



9 ATAN atan 
16 LOG10 log10 
17 LOG log 
18 EXP exp 
19 SQRT sqrt 
20 CEIL ceil 
21 FLOOR floor 
22 MY_PI NULL 
Functions with 2 two arguments (code >128) 
129 ADD my_add 
130 SUB my_sub 
131 MUL my_mul 
132 DIV my_div 
133 POW pow 
Code to represent the parameter 
255 T NULL 

»   

The above table is stored in every Mote that runs TBF. During encoding, we replace 

all instances of the function string with code (the left most column), immediates parsed 

into little endian format and prefixed with the appropriate code, the program decides 

what data type to use in order to encode the trajectory in a compact form. On 

reception of a packet, the code present in the packet is looked up in the table and the 

appropriate function is called (the right most column contains pointers to the 

function). In case the code represents an immediate, the appropriate number of bytes 

are read from the packet and converted to the endianess of the current architecture.  

Examples 
Consider 4*sin(t) 

The binary postfix encoding will be: 

0x03 0x04 0xff 0x04  0x83 
char encoding 4 t sin * 
Total Size: 5 bytes 
 

Consider 20000*sin(t) 

The postfix encoding will be: 

0x02 0x204e 0xff 0x04 83 
int encoding 20000 t sin  * 
Total Size: 6 bytes 
 

Consider 3.323*t + 90 



The postfix encoding will be: 

0x01  0x08ac5440  0xff  0x83  0x03  0x5a  0x81 
float enc. 3.323 t * char enc. 90 + 
Total Size: 10 bytes 

Packet format and processing 
The TBF packet structure is nested into the data section of a TinyOS packet. Since 

the default TinyOS packet size is 36 bytes (with 4 bytes for the TOSMsg header and 2 

bytes for the CRC), the TBF packet is limited to 30 bytes. This seems to be sufficient 

for specifying many simple trajectories with space left for data. 

0    15   31
SOURCE DESTINATION 
T Value 
TTL Type of Service Policy # x bytes # y bytes P F Pad 
        
      

   

Trajectories/Data 
Section 

   
        
        

TBF header structure 

Source - The originating node of the TBF message (2 bytes). 

Destination - The final destination (2bytes, not to be confused with the TOS 

destination, which is the next hop destination) 

T-value - Best described by the t value in a parametric function. This allows nodes to 

know where they are on a particular curve, and in which direction the message is 

traveling (4 bytes). 

TTL - Time To Live field (1 byte). 

TOS - Type Of Message, used to distinguish among different types of TBF packets, 

requesting different services (1 byte). 

Policy - The forwarding policy to use (4 bits) 

#x/#y bytes - The number of bytes used to encode the x/y parametric equations, 

respectively (4 bits each) 

P - bit specifying if the packet should be processed (1 bit). 

F - bit specifying if the packet should be forwarded (1 bit). 

The remaining 18 bytes are used to encode the parametric trajectories and any other 

data. 



Neighbor discovery and maintenance 
Each node in the network maintains a list of it s immediate neighbors and all forwarding 

decisions are made by considering the positions of all the neighbors relative to the 

trajectory. Every node in the network broadcasts a special beacon packet periodically. 

Any node that receives the beacon will update its neighbor table. 

Beacons 

Beacons have the following packet structure: 

2 byte Moteid 4 byte X 
coordinate 

4 byte Y 
coordinate 

1 byte total_neigh List of  neighbors (up to 
total_neigh) 

 

Moteid specifies the ID of the mote transmitting the beacon 

X/Y-coordinate specifies the location of the current  

total_neigh specifies the total number of neighbors this node has 

Rest of the packet will have the Ids of all the neighbors of this node 

When a node receives the beacon packet, it adds the Moteid, and the locations into 

the neighbor table. The rest of the data is currently ignored, it is however used by the 

GUI to display the connectivity graph of the network. 

The structure of the neighbor table is as follows: 

Mote id X coord Y coord T value Distance Dirty Clock 
 

It should be noted that this structure is never sent out in the packet, each node 

maintains this table and it is updated whenever a beacon is received. The T-value and 

Distance fields are local information; it only makes sense with respect to some given 

trajectory; only the policy algorithms use these to find the relative position of the node 

with respect to a trajectory. The Dirty field is not currently used and we plan to have 

a trajectory-caching algorithm that will greatly reduce the calculation overhead for 

consecutive packets with the same trajectory. The Clock field is used to remove dead 

nodes, and maintains soft state of the neighbors.  

Removing dead nodes 
We envision a network with mobile nodes, where intermediaries can move around in 

the network at will. Whenever a node moves out of a cell, it should be removed from 

the neighbor list of all other nodes within its radio range (at some time in the future). 

Also, if the node dies for some reason, we need to collect all allocated resources in the 

neighbor table. In order to do this, we use the Clock field to keep track of how often 

the node has beaconed; a high clock value indicates that the node has not beaconed 

recently. Whenever the clock value for a particular node exceeds a tunable threshold 



value, we delete that node from the table. When a node beacons, we set its clock 

value to zero and increment the clock value of all other nodes by one. 

Software range and negative beacons 
While the soft state nature of beaconing is sufficient for most cases, it is not 

particularly well suited for cases with high mobility. It takes a long time to detect if a 

node is out of communication range. In order to address this issue, we have the 

concept of software range. Each node maintains an approximate value for its radio 

communication range. Whenever a node receives a beacon from another node outside 

its software communication range, the entry for the node is removed from the neighbor 

table. Let us consider the case when node X is about to move to a new location (x2, 

y2) from the current position (x1, y1). Before moving out (while still at (x1, y1)) it 

sends out a beacon, claiming its position to be at (x2, y2). Now, many nodes around 

the point (x1, y1) will be able to hear the beacon, they calculate the distance to (x2, 

y2) and if the distance is greater than the software radio range, they immediately 

remove the node X from the table. This way, we can forcefully update the table 

without waiting for a long time. 

Forwarding policy 
Currently, we have implemented two forwarding policies, the maximum progress policy 

and minimum distance policy. The maximum progress policy will choose the next 

neighbor such that it makes maximum progress along the trajectory, it does not 

consider the distance of the node from the trajectory. This can have some unintended 

side effects in large networks, due to the greedy nature of the algorithm. The minimum 

distance policy always chooses the node that is closest to the trajectory, without 

considering how much progress it would make along the curve. The advantage of this 

algorithm is that in large networks, packets will not stray away from the trajectory. On 

the flip side, this is very inefficient in terms of the number of hops that need to be 

made to reach the final destination. 

The core algorithm is implemented in the function build_assoc(). For every neighbor, 

we calculate the smallest distance to the trajectory and the progress the node would 

make along the trajectory. This is done by first diving the trajectory (in the vicinity if 

the current node) into discrete parts. The distance from every neighbor to each of 

these discrete points is calculated and the shortest one is stored, along with the point. 

We use the neigh_table data structure described previously to do this (the t and the 

dist fields respectively in the structure). The policy functions sift through this to pick 

the node best suited to deliver the packet. 



Querying protocol 
With the obvious limitations of debugging with only 3 LEDs, a protocol was designed 

to extract state information from the motes. A separate message handler 

(am_msg_handler_8 wired to tbf_query_event) was created to return this information on 

demand. Currently only a neighbor list query is implemented. The structure of the 

protocol is such that it will allow for expansion for the type of queries and the return 

types. Programs originating the queries can reuse the TBF header structure to send 

query messages. Query Type is put into the TOS field of the TBF header.  Query 

replies for neighbor lists begin with a 1 byte Moteid of the replier, then 1 byte for the 

number of neighbors, followed by the Moteids of the neighbors (each 1 byte). 

Writing TBF applications 
So far we discussed the design and implementation of TBF on the Mica Motes. This 

corresponds to the networking layer in the network stack. It is evident that this is just 

the framework and applications need to interact with the network layer in a well-

defined manner, also we need to support multiple applications. The process flag in the 

TBF header is used to decide whether a received packet must be sent up the stack or 

not. The TOS field is used as a multiplexing key to deliver the message to the 

appropriate application. Any application that is interested in a particular type of data 

must register a function that needs to be called when a message of that type is 

received. We have provided the tbf_tos_register() and tbf_tos_deregister() functions. 

This design closely matches with the TinyOS philosophy of active messages. The 

functions are given full access to the TBF headers and they can modify them before 

they are forwarded any further. In future versions, this will be more tightly integrated 

with TinyOS so that the signaling mechanism used to trigger events will be made use 

of, instead of just calling a function. 

Demo setup 
The first and simplest demonstration of TBF was a 3 x 3 grid of nodes (1 x 3 grids 

were good initially, but were otherwise unremarkable). Numbered from 0 to 8, the 

nodes were given their absolute locations and allowed to stabilize their neighbor 

tables. A node was chosen as the source, and another as the destination. All the TBF 

constructs were encoded into an RF packet using the TBF Viewer (GUI), which in turn 

sent the packet to the SerialForwarder, and ultimately sent out through the UART to 

the waiting base station. The propagation of the packet could be seen with the toggling 

of the yellow LED on the MICA Motes. A description of each of these components 

follows.  



 
Forwarding packets along a vertical straight line. The yellow LEDs lit indicate the path 

the packet followed. The GUI display shows the vertical line representing the 

trajectory. 

Generic base 
The generic base is simply a Mote burned with code to forward packets from the 

UART to the RF and vice versa. Its sole purpose is to act as a communication conduit 

between the computer and the sensor network. The code is included as part of the 

TinyOS distribution in nest/apps/generic_base.  

Serial forwarder 
The serial forwarder exists because many different applications may need to access the 

serial port for the purposes of communicating with a network of motes.  It acts as a 

traffic-multiplexer for packets going out to the base station and packets coming in 

from the base station.  Applications wishing to use the base station must create a 

socket connection to the serial forwarder and write/read from the socket.  The 

SerialForwarder is written in Java, but this is irrelevant to the application, as any 

program capable of creating TCP connections will be able to communicate with the 

forwarder. The serial forwarder also allows for implementations that put the application 

and the base station on different machines, as long as there is a network connection 

between the two. More information about the serial forwarder can be found in the PDF 

documentation in the TinyOS distribution. 

TBF viewer 
The TBF Viewer Java GUI interface to TBF allows the user to easily inject TBF 

packets, visualize network topography, query nodes and more.  The user simply has to 



input the necessary fields, the parametric trajectories and other TBF constructs. The 

application receives and parses packets and displays the results on screen. When 

injecting a TBF packet, the application encodes a TBF packet and sends it to the 

serial forwarder.  

When considering what development environment/language to use for the GUI, Java 

naturally came to mind. Rapid application development and portability were the main 

reasons that Java would work well in this situation. There were, however, drawbacks to 

using Java - including data conversion and speed.  

Future work and Conclusion 
TBF is practical to implement on extremely resource constrained embedded devices. 

There are a slew of applications for this new technology, both in civilian and military 

contexts. The forwarding decision is made locally and in constant time irrespective of 

the network size, thus being scalable. Some of the issues we did not cover were better 

encoding of the trajectory to reduce size, including compression techniques. Also, 

RPN can be slow to evaluate since it is interpreted; many ideas from active networks 

can be easily applied to speedup this process. 

Service discovery with TBF 
There exist many publisher/subscribe models for sensor networks; many of them rely 

on flooding to locate the publisher of data. We believe flooding is expensive and not 

scalable. The idea is to implement a fully functional service discovery protocol based 

entirely on TBF. The advantages are many, including longer battery life and lesser 

network congestion. The general approach we intend to take is as follows: Each 

publisher of a data sends out the advertisement for the service along radial lines 

(emanating from its current position) throughout the network. This message is cached 

within the network. When a node is interested in a particular type of service, it sends 

out another message along radial lines. By simple, geometry it is evident the two sets 

lines will intersect at some points in the network. One of the nodes near the 

intersection will reply back with more information to the subscriber about the location 

of the publisher. It is easy to see why a naïve implementation will not scale beyond a 

few hundred nodes, due to memory requirements. Our aim is to design an efficient and 

reliable protocol for this purpose. 
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