CS541 Database Systems Final Project Report 1

Survey of Algorithms and Techniques for
Colored Range Searching

Ashwin Kashyap
ashwink(@paul.rutgers.edu
Project Website: http://www.cs.rutgers.edu/~ashwink/db _project

Submitted in partial fulfillment for the course CS541 Databases Systems

Course Advisor: Prof. S. Muthukrishnan
muthu(@cs.rutgers.edu

Abstrace—Colored range searching is a fundamental problem that arises in many applications like spatial databases,
network routing, document retrieval, and sub-string indexing. In the general case, a set S, of colored geometric points are
to be preprocessed so that given a query object g, the distinct colors of the objects intersected by g can be reported
efficiently or the number of such colors can be counted efficiently. While optimal algorithms exist to solve these problems
in general, there are not many databases that implement these algorithms. This is a survey of such algorithms and
techniques. We also explote how we can implement some of these algorithms in a real-world database system; we then
evaluate and analyze the performance of these techniques. The database used is PostgreSQL, which has good geometric
primitives, including data types, operators and indexes.

CS541 Database Systems Final Project Report 2

TABLE OF CONTENTS
L IEOAUCHOMN .ottt ettt ettt ettt ettt et et e st ete et e et ese et et e st e s et enteae et et entese et et eateae et enteteeae s enteteete s entere et et eneereeseneas
II. Motivation and Applications....
III. Problem Definitions
1D €OlOL £ANGE SEALTCHING ...oicviiviceciii s
2D cOlOf 1ANGE SCALCRING ...ovvviiiicicic e
COlOLEA POINE ENCLOSULE ...ttt ettt ettt et et ettt eae et et et ese et et ensesees et eseeseesentenseseesensessesesensensesensenes
CommOn COlOLS QUELY ..ottt
GROUP BY queries
Algorithmic Solutions.....
Fractional cascading
Generalized 1D Range SEarching ..o 5
Colored Range Searching i1 1D . ..c.coiiiiiiiiiiiiiici s 6
SOIIHONS 110 2ID oottt ettt ettt ettt eaeea et e et eae et e s e et ese et et entese et enseneese et entensese s entereesentenseneerennenes 7
V. Expetimental STUAYcccoiii e 7
VI Conclusion
RELEIEIICES vttt et ettt et et et et ete et et e st eae et et e st et et eateas et e st ensese et et eeeea e et enteaeea et entere et et entere et et eneere s enean

mO0w-

S

IV.

SO

LisT OF FIGURES
Figure 1: Document Retrieval PLODIEMmcccoiiiiiiiiiiiiiici s
Figure 2: Illustration of the 1D Range searching Algorithm........
Figure 3: Performance compatrison of query execution times
Figure 4: Impact of data range on query execution tmecoceeeveereerenn.
Figure 5: Scalability of the algorithm as the number of COlOLS IICLEASE......ouiviuiiiiiiiiiciicc s 8
Figure 6: Scalability of the algorithm as the number of tuples INCIEASEc.vuvviiviiiciiciicc s 8

CS541 Database Systems Final Project Report 3

I. INTRODUCTION

One of the prevalent problems in a lot of database applications is to report distinct categories of a given set of objects
that meet some criteria, formally, this is known as the Colored Range Searching (CRS) problem. This is also known as
the Intersection Searching problem and there are variations on this; either count the objects or report them, these atre
classified as the Counting problem and the Reporting problem.

CRS 1s a specific instance of the range-searching problem, which is thoroughly investigated in the database community
and there exist efficient algorithms and data structures that are readily implemented in every commercial database
system. CRS can be solved using the same general techniques as range searching, then iterating over the results we can
either report or count the objects (this translates to the GROUP BY or the COUNT feature in SQL). While this is a
straightforward solution, it is clearly inefficient and much work has been done in developing efficient data structures and
algorithms.

II. MOTIVATION AND APPLICATIONS

There are several well-known algorithms and data structures on colored range searching and most of the research so far
has been of theoretical interest, and no definitive results are know on the performance of these techniques in a real wozrld
database system. Most database systems are highly tuned for real world load and query scenarios and take into
consideration various factors of I/O like block transfers and random transfers for implementing any given algorithm.

In almost all of the algorithms for CRS, augmented data structures are used to store additional information contained in
the sub-tree at a given node, while this ensures that the number of tree traversals needed to find the required data is
reduced, no results are known when parts of the data have to be retrieved from the disk. Clearly, these algorithms do not
make distinctions between various types of disk accesses and assume a uniform cost model for data retrieval. It would
be interesting to compare performances after implementing some of these algorithms.

Some of the applications, which we expect to see a significant improvement in performance are:

» Consider a database that logs all IP packets traversing a router over time. IP packets have a structure; out of the
total 32 bits, some higher order bits correspond to the network and are termed the network address. The rest of the
lower order bits are termed as the host address. Queries are of the form “give me all network addresses of all
packets that traversed the router in a certain time interval”. Clearly, there are two ranges here, the time interval and
the range of IP addresses having the same common prefix. The result of the query falls within the cross product of
the two ranges. This is an example of a two dimensional color range searching. This is a particularly challenging
application, and as high-speed networking becomes more common, the logs will grow bigger and it is very
important for the database system to
minimize the time taken to process the
query.

» Given a set D of text documents
di, doy ... dp and a string pattern p, our
goal is to efficiently list all documents
that contain the string. The overall
approach is to perform “local
encoding” which consists of chaining
each document suffix to another
neartby document based on some pair
wise criteria. From this, range queries
are generated, which have objects
drawn from different documents,
which may be thought of as different
colors. This is the document-listing
problem, it occurs very frequently in
web searches, and [13] solves this
problem optimally. Figure 1 Ilustrates

the problem; here each node represents
a node in the suffix tree, which is built
on the given library of documents. The

leaves represent the 7 suffixes in the Figure 1: Document Retrieval problem

library.

CS541 Database Systems Final Project Report 4

» Matching sub-strings has become increasingly important, especially since XML databases are gaining popularity. It
is well known that B-Trees are I/O optimal in one dimension, but no index structure with non-trivial query bounds
is known for two-dimensional sub-string indexing. [9] Presents an algorithm to solve this efficiently. They largely
rely on transformations of the problem to a version of Common Color Query (CCQ) in two-dimensions, this is a
more general version of CRQ, in that there is mote than one range and all of them are disjoint.

» Consider a database of mutual funds. Each fund has an annual total return and a factor that represents the fund’s
volatility. Clearly, each fund can be represented as a colored point in a plane. Generally, funds are classified into
fund families they belong to. One might be interested in all funds having a certain range of volatility and another
range of annual return. It is more efficient for an investor to consider the family of funds that meet the criteria
instead of considering all the individual funds. This is an instance of the two-dimensional range-searching problem.

» Consider the above example, but if we are just interested in a range for the annual total return, the problem reduces
to a colored range search in one-dimension.

III. PROBLEM DEFINITIONS

These are the formal definitions of the various problems we discuss in this survey. These problems are addressed by
various researchers under different names (intersection searching, range searching etc.), however, the underlying problem
is essentially the same. Here we refer the color to denote the category of the object.

A. 1D color range searching

Given a set S, of 7 colored points on the x-axis, we need to preprocess the points such that for any query interval
g = [, x2] we need to either report the distinct colors that meet the criteria or count them.

B. 2D color range searching

Given a set S, of # colored points in the plane, we need to preprocess the points such that for any query interval
g = [, x2] X [y1,.y2] we need to either repozt the distinct colors that meet the criteria or count them.

C. Colored Point enclosure

We are given P, a set of # colored points, we have to preprocess this so a query of the following form can be answered
efficiently: Given a quety point ¢ = [g1, ¢2], the problem is to output the set of distinct colors on rectangles that contain

q.

D. Common Colors Query

We are given an array A[1...N] of colots drawn from 1,..., C. We want to preprocess this array so that the following
quety can be answered efficiently: Given two non-ovetlapping intervals I; and I» in [1, N}, list the distinct colors that
occut in both intervals I; and I,

E. GROUP BY gueries
The GROUP BY clause in an SQL query will gather all tuples together that contain data in the specified column(s) and

will allow aggregate functions to be performed on the one or more columns.

For example:

SELECT nax(sal ary), dept FROM enpl oyee GROUP BY dept;
This statement will select the maximum salary for the people in each unique department. Basically, the salary for the
person who makes the most in each department will be displayed. Their salary and their department will be returned. We
can use this technique to remove duplicates, however, this can be inefficient when the result set is large.

IV. ALGORITHMIC SOLUTIONS

Most solutions deal separately with problems of different dimensions; here we consider, in deep, only the
one-dimensional case of the problem and give a brief overview how these can be extended in two dimensions. Solutions
of higher dimensions are not discussed.

CS541 Database Systems Final Project Report 5

A. Fractional cascading
This [3] is a type of data structure that is used to speed up search problems and range queties. Suppose we have to
search the same key in several sorted lists, each of size 7. The obvious approach is to perform a binary search in each
list — requires O(log #) operations for each list. Fractional cascading is a method of cross-linking those lists in such a way
that the O(log #) cost of binary search has to be paid only once: to locate the key in one of the lists. The cross-links then
allow the key to be located in each additional list with only a constant number of operations.

B. Generalized 1D Range Searching

[11] Describes a simpler method to transform the 1D colored Range searching problem to an instance of a set of points
in a plane, such that any query will return only those points that are unique in color.

Given a set S, of # colored points on the x-axis and a query interval ¢ = [x7, x2|, we sort the distinct points of that color
by non-decreasing x coordinate. For each point p of color ¢, let pred(p) be its predecessor in the sorted order; for the
leftmost point of colot ¢, we take the predecessor to be the point -00. We then map p to the point p' = (p, pred(p)) in the
plane and associate with it the colot ¢. Let §" be the resulting set of points. Given a query interval g = [x7, x2], we map it
to the grounded rectangle ¢' = [x, xz] X [-00, x].

LEMMA
There is a point of color ¢in g = [xv, x2] if and only if there is a point of color ¢ in [x7, x2] if and only if there is a point if
color cin ¢' = [xy, x2] X [-00, x7]. Moreover, if there is a point of color ¢in 4', then this point is unique.

PROOF

(€) Let p' be a ccolored point in ¢, where p' = (p, pred(p)) for some c-colored point p 0 S. Since p' is in
[51, 2] X [-00, x7], it 1s clear that x; < p < x2 and thus p O [, 2]

(=) let p be the leftmost point of colot ¢ in [x7, x7]. Thus x7 < p < x2 and since pred(p) O [y, x2], we have x; > pred(p). It
follows that p' = (p, pred(i)) is in [x7, x2] X [-00, x7]. We prove that p' is the only point of color ¢ in 4. Suppose for a
contradiction that 7 = (7, pred(?)) is another point of color ¢ in ¢'. Thus we have x; <7< x2. Since 7> p, we also have
pred(f) 2 p 2 x;. Thus 7 cannot lie in ¢' — a contradiction. The claim follows.

The Lemma implies that we can solve the 1D color range searching problem by simply reporting the points in ¢,
without regard to colors. In other words, we have reduced the 1D color range searching problem to the standard
grounded range-reporting problem in two dimensions.

Data structure used to represent consist of the following: For each color ¢, we maintain a balanced binary search tree,

»» 1 which the ¢colored points of § are stored in non-decreasing x order. We maintain the colors in a balanced search
tree CT, and store with each color ¢ in CT a pointer T,.. We also store the points in §" in a balanced ptiority search tree
(PST). To answer quety g = [/ 7], we simply query the PST with ¢’ = [/, 7] X [-%,] and reportt the colors of the points
found. The query time is O(log # + £), whete £ is the number of points inside 4.

+ As Figure 2 illustrates, the y-coordinate of a point is the
same as the x-coordinate of the predecessor point. Recall
that the predecessor point of a point p will be a point with

+ the same color and will precede the point p when sorted
+ in non-decreasing order. When a query [/} 7] X [-0,] is
1 asked, it 1s easy to see why there will not be any duplicate
points of the same color within the grounded query
rectangle — the upper bound in the y-axis is the same as
the lower bound in the x-axis, so if a point p is included

|

!
‘ I then its successor will not be included. Note that the
i | lower bound of the range is inclusive, while the upper

Y |

|

|

|

bound is exclusive of the bound values.
This transformation is straightforward to implement in
a database system — the points can be sorted and stored in
o [| O R B-Tree instead of a binary search tree. Most database
oo systems do not include any form of PST and in order to
Figure 2: Illustration of the 1D Range searching efficiently range-query the set of points in a plane, we
Algorithm need to index two columns (or 2D points). R-Tree

CS541 Database Systems Final Project Report 6

indexes are available in many popular commercial database systems and they are capable of indexing this kind of data.
Even if R-Tree indexes are unavailable, most database systems can optimize query execution by examining the selectivity
of the two ranges (in the x and the y axes respectively). Consider the query [/ 7] X [-0,], it is interesting to note the
inverse relationship in selectivity between the two ranges. PostgreSQL suppotts many types of indexes including R-Trees
and we evaluate the performance with R-Tree indexes.

C. Colored Range Searching in 1D

[8] Describes another method to pre-process the set, this however assumes that the points are in [0, U] and they are
integers. Let P be a set of # colored points in [0, U] and let C denote the set of distinct colors in the point set P. First,
consider the semi-infinite quetry g = [xy, ®]. For each color ¢ C, we pick the point p. [J P with color ¢ having the
maximum value. Let P7# denote the set of all such points, and let L. be a link-list of these points sorted in non-
decreasing order. To answer the query ¢, we simply walk the list I and output all colors with x 2= x7. The query [-00, x|
can be answered similarly. To answer a quety ¢ = [x7, x2], we build a ttie T [1] on the values of p [I P. For each node
» O T, let P, denote the set of points contained in the sub-tree of T rooted at ». At each internal node », we store a
secondary structure, which consists of two semi-infinite query data structures I, and R, corresponding to the queries
[, 29 and [-9, g]. L, and R, are sorted linked lists containing either P7# or P”" as explained eatlier. For every non-root
node » 0 T, let B(») = 0 if » is a left child of its parent and B(») = 1 otherwise. To search the trie T, we assign an index I,
for each non-root node » [T I, is an integer whose bit representation cortesponds to the concatenation of B(w)’s, where
wis in the path from root to »in T. The level of a node » is defined as the length of the path from the root to »in T. We
then build a static hash table H;, on the indexes I, in the hash table. The hash table H; uses linear space and provides O(1)
wortst case lookup. The number of nodes in the trie T'is O(x log U). Since each point p [P might be stored at most once
at each level in the lists R,, L,, and the height of the trie T is O(log U), the total size of the secondary structute is
O(nlog U). Hence the size of the entire data structure 1s O(z log U).

To construct the trie T, we sort the point set P to get the sorted list of P, and suppose we need to construct the At
level node 3. Let » and w be the children of gin T. We partition the sorted list of points in P. into sorted list of points in
P, and P, and the construct the lists I, and R,. We now construct the hash table H; on indexes I, for all nodes » in level 7.
If a query g = [xy, x2] 1s given, we find the leaf nodes g; and g which store x; and x> and then compute the least
common ancestor of g; and 3 by finding the common prefix of the bit representation of x; and xz, let this be £ having a
length / We can find the node » by searching for £ in the hash table Hj let ¢ and f be the child of ». All the points
P O[5, 5] are contained in P, and Pr To find the points, we take the union of the results from two semi-infinite queries
[57, 0] and [-90, x2]. Each color in the output list is reported at most twice.

Cleatly, this algorithm is more complex than [11] and tries are needed, which may not be present in many database
systems, moreover the output is not free of duplicates and these must be eliminated.

D. Common Colors Query

Another interesting problem is the Common Colors Query (CCQ). In this problem, we are given an array 4[1...N] of
colors drawn from 1, ..., C. We want to preprocess this array so that the following query can be answered efficiently:
Given two non-overlapping intervals I; and I in [1, N], list the distinct colors that occur in both intervals I; and I,

[9] Solves this problems optimally, the algorithm is as follows: We construct a matrix 44 in which AA[z 7] = ¢ if and
only if A[7] = A[j] = ¢. Thus, AAis a [1, N] X [1, N] matrix. Any query to 44 will be a rectangle, that is [a, §] X [¢, d] and
it returns the distinct colors in the rectangle. A query for the CCQ problem on array A4 with input intervals I; and I> is
the same as a quety to matrix .44 with input I; X Iz this means we need to solve the rectangle query on the matrix .44
efficiently.

Preprocessing is done by considering the N columns of matrix 4.4 and constructing a x-adic grouping. That is, we
consider metacolumns by concatenating columns Ax? + 1, &x? + 2, ..., kx> + x2, for integers £ and 7 Clearly, the
maximum possible value of I is O(log. (IN)). Next, we linearize the metacolumns row-wise. The total size of the matrix
AA is at most N? / B disk pages. The total size of all metacolumns is O(N? / B log. (IN)) since each column is in at most
O(log. (IN)) metacolumns; this is the size of all the 444 ;s combined.

Query processing is done as follows: Given a quety rectangle [4, 4] X [¢, d] on the matrix .44, we decompose [4, /] into
its maximal, disjoint x-adic components (£i, #1), (b2, 22), ..., (&4, 7)), that is [a, b] = [(kee’ + 1)... (k1 + D' (kox? + 1)
co(l Dot (ke + 1) ... (k& F 1)x7. The maximal decomposition of the x-adic components can be
replaced by one of larger z which can be easily found greedily: by starting from « and walking right to the
closest x-adic endpoint one after the other, always taking the largest possible power of z We then solve the

CCQ problem on [4, b] X [¢, 4] by solving the CCQ problem on each of the x-adic components (&, z) above

CS541 Database Systems Final Project Report 7

Tuples = 100,000

#Tuples = 1,000,000 Query Range = Data Range

Data Range (5, 1000)

45
60
— 4 .\+/_4—.—._’\
50 1 35
3]
201
Bgen @25 —e—gen
o Bsd © —m—std
l £
£0 E 27
E
15 |
204
1
10 05
0
0 0) 0) 0) 0) 0) 0) 0)
(5,1000) (500,1000) (750,1000) (995,1000) (500,750) (500, 510) 10 (5,800 G 1,000 ®. 5000 ® 10000 ®: 15000 (5‘10000
Query Range Data Range

Figure 3: Performance comparison of query execution Figure 4: Impact of data range on query execution time
times

with interval |4 d] on the j-axis for the entire width. It is easy to obsetve that his is precisely the CRQ
problem on the linearized array 444y ;.

E. Solutions in 2D

Most of the 2D techniques surveyed use some form of a persistent data structure and is non trivial to implement in any
database system without further changes to the system itself. Both [11] and [8] have transformations and further
describes a method to efficiently solve the CRS problem in two dimensions. The transformation uses more complex data
structures and we will not investigate this further.

V. EXPERIMENTAL STUDY

We implement the 1D color range searching algorithm described in [11] using the PostgreSQL 7.1.3-2 database system.
All the tests were tun on a dual processor PIII running at 700MHz with 128Mb main memory. The operating system was
RedHat Linux 7.2. All code used in the experiments is available at: http://www.cs.rutgers.edu/~ashwink/db project.
Two relations were created, namely gez and 574 with the following schemas:

CREATE TABLE gen (color in, x bigint, t1 text, t2 text, t3 text, t4 text, t5

text);
CREATE | NDEX geni dx ON gen USI NG BTREE (X);
Gen
color int | x bigint | t1 text | 2 text | 3 text | t4 text | t5 text |

CREATE TABLE std (color in, coord point, t1 text, t2 text, t3 text, t4 text,
t5 text);

CREATE | NDEX stdidx ON std USI NG RTREE (box(coord, coord));

Std

color int | coord point | tl text I t2 text I t3 text | t4 text | t5 text |

The gen relation stores the 1D points, which are not processed. The s#d relation stores the values as poznss [10], as
(x, pred(x)) for each color. The point data-type is a geometric-type present in PostgreSQL, basically, these are pairs of
floating point numbers stored as one single attribute; however only special indexes like R-Trees can be built on this data
type. In most database systems, entire tuples must be loaded into main memory; even if a subset of the attributes is not
needed by the query. In order to simulate these real load scenarios, some extra attributes were added (¢7 to £5); the values
of these fields are arbitrary strings of the same length. The relation was generated with random colors between 0 and 72,
except in [figref here]; the distribution was uniform. 0 was treated as the ground (-0). Each query was run three times in
succession and the final result were averaged; the deviation between runs was insignificant.

A B-tree index was built on attribute x in the relation ger, and an R-Tree index on the attribute coord in the relation std.
The SQL statements used to query the relations are as follows:

CS541 Database Systems Final Project Report 8

Range = (5, 1,000,000) Data Range = (5, 1000)
Tuples = 100,000 Query Range = (5, 1000)
4.5 60.001

4 —e—gen
50.001 + —=—std
3.5
34 / 40.001 -
25

O O
OJ 4
g g 30.001
Fo27 [S
1.5 A 20.001
1 —e—gen
E‘ st 10.001
0.5 4
0 . . : 0.001 T T T T
0 50000 100000 150000 200000 0 200000 400000 600000 800000 1000000
Colors Tuples

Figure 5: Scalability of the algorithm as the number of Figurg 6: Scalability of the algorithm as the number of
colors increase tuples increase

SELECT col or FROM gen WHERE x>=start_range AND x<end_range GROUP BY col or;
This query is on the gex relation, and will find all x values between szart_range and end_range and group the result by color,
for each experiment, we vary the start_range and the end_range and this referred to as the query range.

SELECT col or FROM std WHERE coord @ box '((start_range, ground), (end_range,
start_range))' GROUP BY col or;
This query is on the s7d relation and will find all points contained on or within the box specified; here the box is
completely specified by the end points of the diagonal. Note that we still have to do a GROUP BY, since the @ operator
will list points that are on the border, however these will be very few.

Figure 3 illustrates the time to execute the queries for various query ranges; the data range is constant (5, 1000). For
range queries on the entire range ((5, 1000)) the new technique performs significantly faster than the straightforward
approach. It can be further noticed that the query takes constant time irrespective of the query range, this is due to the
fact that the GROUP BY clause in the first query will have to process the entire output. As the query becomes more
selective, this difference diminishes. But for the second query, there are effectively two ranges and the total selectivity
remains more or less constant.

Some smart query optimizers process data and store a slew of statistics. Figure 4 depicts the impact of data range on
the query execution, and shows that it has no effect. Further tests need to be conducted using the analyze data feature in
PostgreSQL to draw a definitive conclusion. Also, the distribution of the points is normal and the data set is synthetic, it
would be interesting to run the tests on real world data.

Another interesting experiment is how the algorithm scales as the number of colors increase; this is depicted in Figure
5. The algorithm takes more time to process the query as the number of colors increase. This is intuitive, since the
algorithm is output sensitive. What is interesting is that it still performs better than the ordinary case, even when the
output size is large and tends towards the total number of tuples. It must be clarified that the cokrs on the x-axis 1s the
range of colors that can be generated randomly, the number of distinct colors will be lesser. Further studies indicate that
the two queries take the same amount of time when the number of distinct colors is the same as (or greater than) the
total number of points.

Figure 6 Shows the scalability of the algorithm as the number of tuples increase, query range was the same as the data
range. The lower line represents the performance of our algorithm, and the top line is the worst-case query time on the
gen relation. In both cases, the time taken increases linearly with the number of tuples, however the slope of the line for
the s7d telation is an order of magnitude lesser than the ordinary case. This is intuitive, since GROUP BY clause for the
ordinary query must process the entire output (query range is the same as the data range), while in our case, very few
duplicates are present (strictly, no duplicates will be preset, but recall the use of the @) operatox).

CS541 Database Systems Final Project Report 9

VI. CONCLUSION

We implemented the Generalized 1D Range Searching using the PostgreSQL database system. The algorithm is a
technique to preprocess a set of colored points, so that given a query range we need not perform duplicate elimination —
a costly process. We wete able to reduce the worst case running time of queries on these classes of problems by an order
of magnitude. Further, as our studies indicate this algorithm scales well with both increase in colors and tuples.
Some of the issues that are not addressed by this study include 2D and higher range searches and counting. Some
interesting observation were made, when the strings in t1 to t5 are really huge, the performance degrades drastically for
both cases and this needs to be further investigated — we need to understand implementation of internal algorithms used
by PostgreSQL in order to explain this. One of the most common queries involve aggregation, they are of the form:
SELECT nmax(x) FROM std WHERE coord @ box '((start_range, ground),
(end_range, start_range))' GROUP BY col or;
How can we make this work? Intuitively the min() case will be easy to implement, since the points are sorted in non-
decreasing order and we will always have the minimum of any given color in the query range. Similarly, with slight
modifications to the algorithm (sort in non-increasing order and use successor points), we can make the max() case to
work. But can we make both these to work? We need to do further studies in the area of aggregated range queries and
how these can be implemented efficiently.

REFERENCES

[1] A.V.Aho,]. E. Hopcroft, and J. D. Ullman. “Data Structures and Algorithms”, Addison Wesley Press, 1983.

[2] Antonin Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching’, SIGMOD Conference 1984: 47-57.

[3] Bernard Chazelle and Leonidas J. Guibas, “Fractional Cascading: I. A Data Structuring Technigue”, Algorithmica Vol. 1,
No. 2, pp. 133-162.

[4] Dictionary of Algorithms and Data Structures http://www.nist.gov/dads/.

[5] Hanan Samet, “Range Trees and Priority Search Trees”.

[6] Joseph M. Hellerstein, Jeffrey F. Naughton, Avi Pfeffer, “Generalized Search Trees for Database Systems”, Proc. 21st Int.
Conf. Very Large Data Bases, VLDB.

[7] Pankaj K. Agarwal, “Range Searching’, CRC Handbook of Computational Geometry (J. Goodmand and J. O'Routke,
eds.).

[8] Pankaj K. Agarwal, Satish Govindarajan, S. Muthukrishnan, “Range Searching in Categorical Data: Colored Range Searching
on Grid’.

[9] Paolo Ferragina, Nick Koudas, S. Muthukrishnan, Divesh Stivastava, “Two-dimensional Substring Indexing’, In PODS,
2001.

[10] PostgreSQL documentation http://www.postgresql.org/users-lounge/docs/7.2/postgres/.

[11] Prosenjit Gupta, Ravi Janardhan, and Michiel Smid, “Further results on Generalized Intersection Searching Problems:
Connting, Reporting and Dynamization”, Journal Of Algorithms 19, 282-317 (1995).

[12] Prosenjit Gupta, Ravi Janardhan, Michiel Smid, “Afgorithms for generalized halfspace range searching and other intersection
searching problems”, Computational Geometry: Theory and Applications, 5, 321-340/

[13] S. Muthukrishnan, “Efficient Algorithms for Document Retrieval Problems”, In SODA, 2002.

